Coherency in Neutrino-Nucleus (vA_{el}) Scattering

Vivek Sharma

On behalf of TEXONO Collaboration

Institute of Physics, Academia Sinica, Taiwan

Outline of Talk ..

- Introduction and Motivation.
- Global Status of vA_{el}.
- **TEXONO** Facilities.
- vA_{el} at KSNL.
- Background and Threshold.
- Sensitivity of Experiment.
- Coherency in vA_{el} scattering
- Summary.

Coherent Neutrino-Nucleus Scattering

A neutrino interacts with a nucleus of neutron number "N" via exchange of Z - Boson.

 $v + N \longrightarrow v + N$

Cross-Section of vA_{el}: $\frac{d\sigma_{\nu A_{el}}}{dq^2}(q^2, E_{\nu}) = \frac{1}{2} \left| \frac{G_F^2}{4\pi} \right| \left| 1 - \frac{q^2}{4E_{\nu}^2} \right| [\varepsilon Z - N]^2 F(q^2)$

Where G_F is fermi constant, E_v is incident neutrino energy, Z(N) is Atomic(Neutron) number of nuclei and q is three momentum transfer.

 $F(q^2)$ is nuclear form factor approaches to ~1 at small momentum transfer.

 $\varepsilon = 1 - 4 \operatorname{Sin}^2 \Theta_{W} = 0.045$

Heavier nuclei →larger cross-section

- This process is coherent upto ~<50 MeV neutrino
- **Cross-section is well-defined in Standard Model.**
- Observed for >10 MeV stopped pion neutrinos.

Important to study for ...

- Important role in Supernova Explosions.
- Test of fundamental SM-electroweak interaction.
- In study of Beyond Standard Model Physics.
- Probe transition of Quantum Mechanical Coherency in electro-weak process.
- Potential use in Reactor monitoring as a portable device.
- vA_{el} Scattering is important to study the irreducible background for Dark Matter search.

Requirements to observe vA_{el}

- High Neutrino Flux
- Lower Threshold
- Better Resolution
- Quenching Factor
- Understanding of Background
- Better Shielding from Gamma, Neutrons etc..
- Sufficient Source On/Off Statistics

Measurable Cross-Section of $vA_{\rho I}$

COHERENT @ SNS, ORNL

Two independent analysis were done:

1. University of Chicago.

2. University of Tennessee and ITEP/MEPhl, Moscow.

Results obtained at 6.7 sigma C.L. for nuclear recoil from ~6 keV to 45 keV.

However, with reactor neutrino, maximum nuclear recoil is <2 keV.

Neutrinos detected are >10 MeV.

Still far to go

D. Akimov et al., Science 10.1126/science.aao0990 (2017)

TEXONO Collaboration

- TEXONO (Taiwan EXperiment On NeutrinO) Experiment is located at Kuo-Sheng Nuclear Power Plant -II on northern shore of Taiwan.
- <u>Theme:</u> Low Energy Neutrino Physics and Dark Matter Searches.
- Collaboration with Turkey, China and India.
- The reactor power of 2.9 GW gives 6.35×10¹² cm⁻² s⁻¹ electron anti-neutrinos at a distance of 28 m.
- Collaboration with CDEX Underground Dark-Matter Experinemt, China.

Kuo-Sheng Reactor Laboratory (KSNL)

Neutrino Studies at KSNL

Pulsar FWHM and Threshold

	Generation	Mass (g)	Pulsar FWHM (eV _{ee})	Threshold (eV _{ee})
Liquid	G1	500	130	500
Nitrogen	G2	900	100	300
Electro-cool {	G3	900	70	200
	G3+	1430	~60	~160

G3 Detector

Advantages of G-3 Electro-cooled HPGe Detectors:

- ≻ No liquid Nitrogen required.
- > Custom Cold-tip Temperature.
- > Controlled microphonic noise.
- > Synchronized negative feedback pumping.

Electrically Refrigerated HPGe Detector

vA_{el} Scattering Rate at KSNL

Quenching Factor and Recoil Energy

Recoil Energy (keV)

vA_{el} at KSNL with Reactor neutrino...

Threshold	300 eV	200 eV	150 eV	100 eV
Differential	0.8 cpkkd	8.3 cpkkd	27.3 cpkkd	109.5 cpkkd
Integral	0.04 cpkd	0.47 cpkd	1.6 cpkd	6.4 cpkd

Channeling Fraction

- Channeling increase counts at higher energy.
- Quenching factor is assumed to be ~1
- Estimated Channeling in Nal is ~3 %

Sensitivity Towards vA_{el} Scattering

- Better to have High On/Off Statistics
- Threshold required below ~200 eV

V. Sharma et al. I.J.P. (2018) 92: 1145. https:// doi.org/10.1007/s12648-018-1202-8

Coherency in vA_{el} Scattering

Form-Factor:

- · Gives an idea about coherency within the nucleons.
- · Used for study of Nuclear Structure.
- Complete Coherence at low Energy.
- $\cdot v \mathbf{A}_{el}$ measures the neutron distribution

Form-Factor is fourier transformation of Charge distribution in the nucleus:

$$F(q) = \frac{1}{A} \int \rho(r) e^{-i\mathbf{q}\cdot\mathbf{r}} d^3r$$

Helm Model Form-Factor:

$$F(q) = \frac{3j_1(qR)}{qR}e^{-(qs)^2/2} = 3\frac{\sin(qR) - qR\cos(qR)}{(qR)^3}e^{-(qs)^2/2}$$

Coherency in vA_{el} Scattering

- The finite phase of net combined amplitude vector can define degree of coherency.
- Combined amplitude can be defined as:

 $\mathcal{A} = \sum_{j=1}^{Z} e^{i\theta_j} \mathcal{X}_j + \sum_{k=1}^{N} e^{i\theta_k} \mathcal{Y}_k \quad \text{where} \quad (\mathcal{Y}_n, \mathcal{X}_m) = (1, -\varepsilon)$

- The cross-section comprise $(N + Z)^2$ terms.
- In total cross-section $\sigma_{\nu A_{el}}(Z,N) \propto \mathcal{A}\mathcal{A}^{\dagger}$, average phase mis-alignment angle follows:

$$e^{i(\theta_j - \theta_k)} - e^{-i(\theta_j - \theta_k)} = 2\cos(\theta_j - \theta_k) = 2\cos\langle\phi\rangle$$

• Degree of coherency described as:

$$\begin{split} \alpha &\equiv \cos\langle\phi\rangle \in [0,1] \\ \frac{\sigma_{\nu A_{el}}(Z,N)}{\sigma_{\nu A_{el}}(0,N)} = Z\varepsilon^2 [1 + \alpha(Z-1)] + N[1 + \alpha(N-1)] - 2\alpha\varepsilon ZN \\ \sigma_{\nu A_{el}}(\alpha) &= \frac{\sigma_{\nu A_{el}}(Z,N)}{\sigma_{\nu A_{el}}(0,1)} \propto \begin{cases} [\varepsilon^2 Z + N], & \alpha = 0 \text{ (incoherent)} \\ [\varepsilon Z - N]^2, & \alpha = 1 \text{ (coherent)} \end{cases} \\ \text{Phys. Rev. D 93, 113006 (2016)} \end{cases}$$

Contour for Degree of coherency

Coherency and Relative cross-section..

Continued..

Expected averaged degree of coherency and relative cross-section for various neutrino source with Germanium target

Status of vA_{el} Scattering @KSNL

Summary

- Study of vA_{el} interaction has importance in order to study the electroweak interaction in SM, Astrophysics and Irreducible background in Dark Matter searches.
- Low energy vA_{el} can be probed by several experiments in the near future with different neutrino sources.
- Studies for vA_{el} from different neutrino sources probe transitions of QM Coherency in Electroweak process.
- Probe to BSM using $v\mathbf{A}_{el}$ interaction with low energy neutrinos is less vulnerable to uncertainties in coherency and Form-Factor.
- Ultra low energy threshold 200 eV is achieved and 150 eV is expected from future detector.
- Roadmap is ready to probe $v\mathbf{A}_{el}$ in near future.

Thank You ..

Neutrino Sources for vA

Exposure-corrected residuals between Beam ON and Beam OFF periods, for AC data (i.e., containing only steady-state environmental backgrounds)

- Super Bialkali Hamamatsu Photo-multiplier R877-100.
- Quantum efficiency is ~38 %
- Basic pulse shape cuts can result 46% CENNS signal acceptance and 96% rejection of background. Bicron 501A liquid scintillator is used to distinguish neutron from gamma interaction via PSD cut.
- Muon veto efficiency is 99.6%

Other vA_{el} Experiments

CONNIE Experiment

- Angra II Reactor @ Brazil, Power = 3.95 GW
- Distance from core = 30 m
- Neutrino Flux ~ 7.8×10^{12} cm⁻²s⁻¹
- At 0 keV threshold ~ 33 events kg⁻¹day⁻¹ are expected.
- Detector mass = 5.2 g
- Net mass of prototype = 52 g

MINER Experiment

- A&M University Texas, Reactor Power = 1 MW
- Germanium and Silicon detectors.
- Distance from core = 2.3 m
- Neutrino Flux ~ 4×10^{11} cm⁻²s⁻¹
- Huge thermal, fast neutron and gamma flux.
- Background of 100 per kg-day in 10-1000 eV_{nr}
- Expected count rate ~ 20 kg⁻¹ day⁻¹ recoil energy between $10 1000 \text{ keV}_{nr}$

Phys. Rev. D. 91, 072001 (2015)

